Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clinical Complementary Medicine and Pharmacology ; : 100009, 2021.
Article in English | ScienceDirect | ID: covidwho-1509628

ABSTRACT

Backgroud : The outbreak of COVID-19 has brought unprecedented perils to human health and raised public health concerns in more than two hundred countries. Safe and effective treatment scheme is needed urgently. Objective : To evaluate the effects of integrated TCM and western medicine treatment scheme on COVID-19. Methods : A single-armed clinical trial was carried out in Hangzhou Xixi Hospital, an affiliated hospital with Zhejiang Chinese Medical University. 102 confirmed cases were screened out from 725 suspected cases and 93 of them were treated with integrated TCM and western medicine treatment scheme. Results : 83 cases were cured, 5 cases deteriorated, and 5 cases withdrew from the study. No deaths were reported. The mean relief time of fever, cough, diarrhea, and fatigue were (4.78±4.61) days, (7.22±4.99) days, (5.28± 3.39) days, and (5.28± 3.39) days, respectively. It took (14.84±5.50) days for SARS-CoV-2 by nucleic acid amplification-based testing to turn negative. Multivariable cox regression analysis revealed that age, BMI, PISCT, BPC, AST, CK, BS, and UPRO were independent risk factors for COVID-19 treatment. Conclusion : Our study suggested that integrated TCM and western medicine treatment scheme was effective for COVID-19.

2.
Pharmacol Res ; 174: 105955, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487920

ABSTRACT

Severe Coronavirus Disease 2019 (COVID-19) is characterized by numerous complications, complex disease, and high mortality, making its treatment a top priority in the treatment of COVID-19. Integrated traditional Chinese medicine (TCM) and western medicine played an important role in the prevention, treatment, and rehabilitation of COVID-19 during the epidemic. However, currently there are no evidence-based guidelines for the integrated treatment of severe COVID-19 with TCM and western medicine. Therefore, it is important to develop an evidence-based guideline on the treatment of severe COVID-19 with integrated TCM and western medicine, in order to provide clinical guidance and decision basis for healthcare professionals, public health personnel, and scientific researchers involved in the diagnosis, treatment, and care of COVID-19 patients. We developed and completed the guideline by referring to the standardization process of the "WHO handbook for guideline development", the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system, and the Reporting Items for Practice Guidelines in Healthcare (RIGHT).


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drugs, Chinese Herbal/therapeutic use , Infectious Disease Medicine/trends , Medicine, Chinese Traditional/trends , SARS-CoV-2/drug effects , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19/virology , Consensus , Delphi Technique , Drugs, Chinese Herbal/adverse effects , Evidence-Based Medicine/trends , Host-Pathogen Interactions , Humans , Patient Acuity , SARS-CoV-2/pathogenicity , Treatment Outcome
3.
Hum Vaccin Immunother ; 17(11): 4102-4104, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1455125

ABSTRACT

After the COVID-19 pandemic, vaccines using inactivated viruses have attracted worldwide attention for the prevention of infectious diseases. Here, we report a patient who suffered from Systemic Lupus Erythematosus (SLE) for six years and developed ocular symptoms within 72 hours after being vaccinated for COVID-19. The patient presented bilateral conjunctival congestion, eyelid edema with pruritus, and suffered from severe headaches. Recovery occurred within 10 days after the onset of symptoms after treatment with anti-infection drugs. The early identification and extensive assessment of side effects help ensuring effective vaccine safety monitoring.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , COVID-19 Vaccines , Humans , Lupus Erythematosus, Systemic/complications , Pandemics , SARS-CoV-2 , Vaccination/adverse effects
4.
Front Immunol ; 12: 731100, 2021.
Article in English | MEDLINE | ID: covidwho-1450811

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious infectious disease that has led to a global pandemic with high morbidity and mortality. High-affinity neutralizing antibody is important for controlling infection, which is closely regulated by follicular helper T (Tfh) cells. Tfh cells play a central role in promoting germinal center reactions and driving cognate B cell differentiation for antibody secretion. Available studies indicate a close relationship between virus-specific Tfh cell-mediated immunity and SARS-CoV-2 infection progression. Although several lines of evidence have suggested that Tfh cells contribute to the control of SARS-CoV-2 infection by eliciting neutralizing antibody productions, further studies are needed to elucidate Tfh-mediated effector mechanisms in anti-SARS-CoV-2 immunity. Here, we summarize the functional features and roles of virus-specific Tfh cells in the immunopathogenesis of SARS-CoV-2 infection and in COVID-19 vaccines, and highlight the potential of targeting Tfh cells as therapeutic strategy against SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , COVID-19/pathology , COVID-19 Vaccines/immunology , Cell Differentiation/immunology , Germinal Center/cytology , Germinal Center/immunology , Humans , Lymphocyte Activation/immunology , T Follicular Helper Cells/cytology
5.
Disaster Med Public Health Prep ; 16(5): 1728-1729, 2022 10.
Article in English | MEDLINE | ID: covidwho-1397774
6.
Front Neurol ; 11: 573095, 2020.
Article in English | MEDLINE | ID: covidwho-1069733

ABSTRACT

By engaging angiotensin-converting enzyme 2 (ACE2 or Ace2), the novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades host cells and affects many organs, including the brain. However, the distribution of ACE2 in the brain is still obscure. Here, we investigated the ACE2 expression in the brain by analyzing data from publicly available brain transcriptome databases. According to our spatial distribution analysis, ACE2 was relatively highly expressed in some brain locations, such as the choroid plexus and paraventricular nuclei of the thalamus. According to cell-type distribution analysis, nuclear expression of ACE2 was found in many neurons (both excitatory and inhibitory neurons) and some non-neuron cells (mainly astrocytes, oligodendrocytes, and endothelial cells) in the human middle temporal gyrus and posterior cingulate cortex. A few ACE2-expressing nuclei were found in a hippocampal dataset, and none were detected in the prefrontal cortex. Except for the additional high expression of Ace2 in the olfactory bulb areas for spatial distribution as well as in the pericytes and endothelial cells for cell-type distribution, the distribution of Ace2 in the mouse brain was similar to that in the human brain. Thus, our results reveal an outline of ACE2/Ace2 distribution in the human and mouse brains, which indicates that the brain infection of SARS-CoV-2 may be capable of inducing central nervous system symptoms in coronavirus disease 2019 (COVID-19) patients. Potential species differences should be considered when using mouse models to study the neurological effects of SARS-CoV-2 infection.

7.
Eur J Clin Microbiol Infect Dis ; 40(4): 715-723, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-841847

ABSTRACT

Recently, various studies have shown that angiotensin-converting enzyme 2 (ACE2) acts as the "doorknob" that can be bound by the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which conduces to its entrance to the host cells, and plays an important role in corona virus disease 2019 (COVID-19). This paper aims to collect and sorts out the existing drugs, which exert the ability to block the binding of S protein and ACE2 so as to provide directions for the later drug development. By reviewing the existing literature, we expound the pathogenesis of SARS-CoV-2 from the perspective of S protein and ACE2 binding, and summarize the drugs and compounds that can interfere with the interaction of spike protein and ACE2 receptor from different ways. We summarized five kinds of substances, including peptide P6, griffithsin, hr2p analogs, EK1, vaccine, monoclonal antibody, cholesterol-depleting agents, and extracts from traditional Chinese medicine. They can fight SARS-CoV-2 by specifically binding to ACE2 receptor, S protein, or blocking membrane fusion between the host and virus. ACE2 is the key point for SARS-CoV-2 to enter the cells, and it is also the focus of drug intervention. Our drug summary on this pathomechanism is expected to provide ideas for the drug research on SARS-CoV-2 and help to develop anti-coronavirus drugs of broad spectrum for future epidemics.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Drug Evaluation, Preclinical , Humans , Receptors, Coronavirus/antagonists & inhibitors
8.
Front Immunol ; 11: 1708, 2020.
Article in English | MEDLINE | ID: covidwho-688089

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is the pathogen that causes coronavirus disease 2019 (COVID-19). As of 25 May 2020, the outbreak of COVID-19 has caused 347,192 deaths around the world. The current evidence showed that severely ill patients tend to have a high concentration of pro-inflammatory cytokines, such as interleukin (IL)-6, compared to those who are moderately ill. The high level of cytokines also indicates a poor prognosis in COVID-19. Besides, excessive infiltration of pro-inflammatory cells, mainly involving macrophages and T-helper 17 cells, has been found in lung tissues of patients with COVID-19 by postmortem examination. Recently, increasing studies indicate that the "cytokine storm" may contribute to the mortality of COVID-19. Here, we summarize the clinical and pathologic features of the cytokine storm in COVID-19. Our review shows that SARS-Cov-2 selectively induces a high level of IL-6 and results in the exhaustion of lymphocytes. The current evidence indicates that tocilizumab, an IL-6 inhibitor, is relatively effective and safe. Besides, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, intravenous immunoglobulin, and antimalarial agents could be potentially useful and reliable approaches to counteract cytokine storm in COVID-19 patients.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Interleukin-6/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Adrenal Cortex Hormones/therapeutic use , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antimalarials/therapeutic use , Artesunate/therapeutic use , COVID-19 , Coronavirus Infections/virology , Hemoperfusion/methods , Humans , Hydroxychloroquine/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Interleukin-6/antagonists & inhibitors , Mice , Pandemics , Pneumonia, Viral/virology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL